Conditional Autoregressive Hilbertian processes

نویسنده

  • Jairo Cugliari
چکیده

When considering the problem of forecasting a continuous-time stochastic process over an entire time-interval in terms of its recent past, the notion of Autoregressive Hilbert space processes (arh) arises. This model can be seen as a generalization of the classical autoregressive processes to Hilbert space valued random variables. Its estimation presents several challenges that were addressed by many authors in recent years. In this paper, we propose an extension based on this model by introducing a conditioning process on the arh. In this way, we are aiming a double objective. First, the intrinsic linearity of arh is overwhelm. Second, we allow the introduction of exogenous covariates on this functionvalued time series model. We begin defining a new kind of processes that we call Conditional arh. We then propose estimators for the infinite dimensional parameters associated to such processes. Using two classes of predictors defined within the arh framework, we extend these to our case. Consistency results are provided as well as a real data application related to electricity load forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study for the Estimation of Autoregressive Hilbertian Processes by Wavelet Packet Method

Abstract. In this paper wavelet packet bases are used for an estimation of the autoregressive Hilbertian processes operator. We assume that integral operator kernel can have some singular structures and estimate them by projecting functional processes on suitable bases. Linear methods for continuous-time prediction using Hilbert-valued autoregressive processes are compared with the suggested me...

متن کامل

Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes

We show consistency in the mean integrated quadratic sense of an estimator of the autocorrelation operator in the autoregressive Hilbertian of order one model. Two main cases are considered, and we obtain upper bounds for the corresponding rates. c © 2001 Elsevier Science B.V. All rights reserved MSC: 62G05; 62M10

متن کامل

Modeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution

Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015), this study attempted to model dynamics following generalized autoregressive conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH), exponential generalized autoregressive conditional heteroscedstic (EGARCH), threshold generalized autoregressive conditional heteroscedstic (TGARCH), and integrated g...

متن کامل

STAT 4 : Advanced Time

4. Course Outline: (i) Review of Linear ARMA/ARIMA Time Series Models and their Properties. (ii) An Introduction to Spectral Analysis of Time Series. (iii) Fractional Differencing and Long Memory Time Series Modelling. (iv) Generalized Fractional Processes. Gegenbaur Processes. (v) Topics from Financial Time Series/Econometrics: ARCH and GARCH Models. (vi ) Time Series Modelling of Durations: A...

متن کامل

Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013